

Datacenters energy consumption

- ► The United States dominates the Data Center industry and are poised to grow (CAGR of 20%) both in the number of centers and as a portion of the United States' energy consumption
- ► Data Centers currently **consume between 2-5% of the entirety of the US electricity** (this represents between 0.3 to 0.7 quads of electricity; 0.9 to 2.1 quads of primary energy)

Number of data centers worldwide in 2021, by country

Number of data centers worldwide 2021, by country

Source(s): Cloudscene; ID 1228433

Baseline projections for 2030

Datacenter Cooling Projections, Business as Usual vs ARPA-E's Vision with CAGR of 20%

Although projections are diverse, this is a growing sector

Potential to save between 0.5 to 1.4 quads of electricity by transformative improvements of datacenter cooling by 2030.

This represents **between 1.6 to 4.1 quads of primary energy** saved¹.

We do not wish to use Energy for cooling – it does not add value

Electronics cooling

Electronics run at 70-90°C (160-194°F) reliably

December 22, 2021

"2nd law of Thermodynamics: Heat always flows spontaneously from a hotter to a colder body"

Outside **ambient temperatures** are **much lower** than **electronics temperatures**; so why do we use massive amounts of **Energy and Water** to reject heat to ambient?

Heat rejection from data centers

Inefficiencies and rising power densities Force the facility supply temperature in the compute room cooling loop to be set to lower temperatures

We're out of luck, chip and server '25-'30 power projected up sharply

With Moore's law sunsetting the benefits of transistor scaling are diminishing. Chip architectures of the future are diverse and higher power.

Al & ML add a diversity of onboard GPU/XPU cores using additional power

High Power Chip Era "★Wild West★" T_i↓

Nvidia A100 GPU 400W (server can have 8x400W in addition to main CPU)

Heterogenous Integration stacking chiplets in 3D configuration challenging to cool!

Analog computing Cerebras 71 in²

rise in FPGAs projected optimized for application

Cooling difficulty projected to rise

ASHRAE coming out with W17, W27, W32, W40, W45, W+ standards

... but predicts that high power CPUs (over 500W) should use W27(<27 °C) or less Facility supply temperature

... as server power goes up, facility supply temperatures projected to need to go down due to cooling difficulty, = more energy for cooling

Cooling difficulty projected to rise

Current chart depicts conductance from chip to coolant in secondary loop. Potential impact target needs to reflect rejection to primary loop.

\Diamond Best in-class liquid cooled thermal resistance $\theta = 0.05$ °K/W

https://www.datacenterknowledge.com/industry-perspectives/skived-coldplates-technical-brief

<u>Vision:</u> If technology is developed to reject heat from future servers **10 x more efficiently** to facility supply, cooling energy is saved

Setting the supply thermostat high above ambient, closer to electronics temperature:

- AC/Chiller minimally/not needed (perhaps just for humans in room, optional)
- ► Hot Dry cooler >90% less power
- ► Hot Evap. coolers > 90% less fan power

^{*)} Compared to 35C rejection baseline

Heat rejection from data centers

If **heat rejection improves greatly**, and becomes as <u>safe</u>, <u>reliable and cost</u> as <u>air cooling</u>...

.... Facility supply can be much warmer ambient heat rejection is easy

Facility supply temperature key driver for energy use

- illustrate effect of facility Temperature on Energy use
- ▶ The price paid for the standard supply temperature low is Excessive Energy Use
 - Chiller has to run most of the year 0.75 quads for cooling
 - Water is consumed in most locations approx. total of >500 billion gallons of water use attributable to US data centers (~57% sourced from potable water)

https://www.nature.com/articles/s41545-021-00101-w

Efficient heat rejection can Change the Landscape

If **technology is developed** to reject heat from future servers **10 x more efficient in secondary loop (chip to facility supply)**; facility temperatures can be evaluated, and **cooling energy is saved**

Bonus features:

- + Location/climate independence
- + Minimal/No need for water usage

- + Reduced footprint
- + Heat rejection >60°C facilitates future WHR

How do we achieve Impact?

Innovation acceptance equation:

(derived from kano model)

Performance Risk, Cost Has to be leap >10x --> performance criteria

Some unique capabilities in the new technology -> delighters

Must have framework: Risk and cost have to stay at parity or reduce (at system level) -> acceptance criteria

https://en.wikipedia.org/wiki/Kano_model

"No one ever got fired because they used too much energy, people get fired when DC goes down"

Impact: we need to get to the point that by 2025-2030 the most costeffective data center is also the most energy efficient

What is disruptive?! What is our moon shot?

©.°°)

Efficient computing vision &holy grail: (refined during this workshop)

Performance

- 1/COP: Energy of cooling less than 3%?-0%? of energy rejected
- Capable of compute systems '25-'30; i.e. 100-200 kW/rack @ 1000W/chip?
 Works on any xpu (chip, memory, gpu, etc.)
- Heat capture few < 5°C below chip temp? > 60°C exit for WHR?
- Co-designed reliable system equivalent to today's air cooling

Must haves / Bounds

- As easy to manage, maintain and operate as air-cooled data center
- Reliability similar to existing systems.
- LCOC: Cost effective → most energy efficient solution is also most costeffective

Wows

- Location independent cooling, 24/7/365 anywhere
- Footprint of mechanical plant/BOP 1:1 to racks
- No\Minimal water usage
- Modular, pre-fab as efficient as large data centers, EDGE?
- System Autonomy? (if it allows for energy reduction)?

Achieving reliability will require System, Sensors& Controls Co-Design Vision

Potential Scope Concepts

Technical Scope A: Secondary Loop

<u>Chip (and other devices) surface to facility supply</u> by <u>any</u> means, but meeting potential program technical, operational and cost requirements

Technical Scope B: Secondary + Primary loop

System-level approach, "All-in-One" Edge data center

Will simplified cooling(Scope A) and hot rejection enable modular DC?

- Self contained
- EDGE high power density

Best in-class 100-150kW/ISO40

- ARPA-E Target 1MW in ISO40?

https://datacentrereview.com/2021/06/sch neider-reveals-all-inone-liquid-cooledecostruxure-modular-data-centre/

Scope of Discussions: Category A & Category B

Category B: Modular data center as Tech/EDGE development platform

Tech Development Platform - System approach

- Cooling innovation (cat A) lead to location independence, less/no water need = enabler for modular systems?
- Allows for volume constrained tech development within ISO40' container form factor (320 ft²), currently best in-class 100-150kW
- ► ARPA-E hard? : i.e. **system-level** approach for:
 - ~1 MW, very efficient (TUE lower than 1.1 = 91% energy used to power XPUs). Compute density of at least 3.28 kW/sq ft.
 - Prefabricated modular system with hot heat rejection with potential for useable or monetizable high-grade heat for WHR heating applications.
 - Vision: Self contained except for power, minimal/no water usage. Easy to install in locally.
 - Reliable: adoption path lead to Tier2? -Tier 3: 99.98%?

Edge data centers

Central data centers

Smart Healthcare Industry 4.0 Security
Smart Agriculture Machine vision
Financial UAV operations
5G/6G
Self driving cars

Signaling driven

Footprint Smallest Small

Large Large
Power budget Low Edge Server Medium

Far edge Aggregated edge Regional

Central

Low latency and security close to customer

https://networks.nokia.com/sites/content/files/openedge_architecture_0.jpg

https://datacentrereview.com/2021/06/schneider-reveals-all-inone-liquid-cooled-ecostruxure-modular-data-centre/

Volume constraint makes this an interesting tech development platform, tech could proliferate back to large data center

How do we frame such a challenge? Breakouts

Wows

- + Location/climate independence
- + Reduced footprint
- + No need for water usage
- + Heat rejection >60°C facilitates future WHR
- = Enabling modularity?

Framework / Must-haves

Bounds

Reliability

Achieving reliability will require System, Sensors& Controls Co-Design Vision

Other?

17

December 22, 2021 Insert Presentation Name

This is our opportunity to make difference

Low risk: use <u>more Energy and Water (both cheap)</u> Run chillers lower, add more chillers

Industry choices
Rapid growth
Processor power↑

X multiply by trends
Usurping Energy
Regional Inequality

Develop leap in efficient heat rejection with similar reliability, cost and operation to air

Transformational trend breach
US leadership in Energy Efficient Computing

- Domestic market and exports

This is our opportunity to make difference

